Bulk and boundary g_{2} factorized S-matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 37 L13
(http://iopscience.iop.org/0305-4470/37/1/L03)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:25

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Bulk and boundary g_{2} factorized S-matrices

N J MacKay and B J Short
Department of Mathematics, University of York, York YO10 5DD, UK
E-mail: nm15@york.ac.uk

Received 13 August 2003
Published 10 December 2003
Online at stacks.iop.org/JPhysA/37/L13 (DOI: 10.1088/0305-4470/37/1/L03)

Abstract

We investigate the g_{2}-invariant bulk ($1+1 \mathrm{D}$, factorized) S-matrix constructed by Ogievetsky, using the bootstrap on the three-point coupling of the vector multiplet to constrain its CDD ambiguity. We then construct the corresponding boundary S-matrix, demonstrating it to be consistent with $Y\left(g_{2}, a_{1} \times a_{1}\right)$ symmetry.

PACS number: $11.55 . \mathrm{Bq}$

1. Introduction

As a preliminary step in the investigation using tensor methods of (1+1)-dimensional factorized S-matrices with exceptional \mathbf{g} (and Yangian $Y(\mathbf{g})$) invariance, we investigate the case $\mathbf{g}=g_{2}$. The factorized S-matrix for the seven-dimensional representation 7 of g_{2} was constructed by Ogievetsky [1], and we use this to construct the ($g_{2} \times g_{2}$)-invariant S-matrix, applicable in the principal chiral model (PCM). We may choose the S-matrix to have a bootstrap pole for the self-coupling of the 7 multiplet, and the bootstrap applied to this process constrains the CDD factor.

We then investigate the corresponding solutions of the boundary Yang-Baxter equations and the boundary S-matrices for the $g_{2} \mathrm{PCM}$-that is, the extension to g_{2} of the calculations carried out for classical \mathbf{g} in [2]. The spectral decomposition is precisely that expected from the $Y\left(g_{2}, a_{1} \times a_{1}\right)$ symmetry [3].

The method used is the diagrammatic technique of Cvitanovic [4]. We denote the cubic antisymmetric invariant of g_{2} as \rangle, then construct the 7 of g_{2} by taking the defining representation of $S O(7)$ and restricting to those $-0-\in S O(7)$ such that $\left.\mathcal{O}_{\circ}=\right\rangle$. Here $\rangle-$ satisfies the identities

$$
\begin{equation*}
\mathcal{M}=-6-\quad\rangle+\mathcal{X}=2\rangle-\overline{-})(\tag{1.1}
\end{equation*}
$$

and it is (sometimes repeated) application of these which is needed to carry out the calculations. If we take the tensor product

$$
7 \otimes 7=\mathbf{2 7} \oplus \mathbf{1 4} \oplus \mathbf{7} \oplus 1
$$

then the projectors onto the irreducible g_{2}-representations are

$$
\begin{aligned}
& \left.P_{27}=\frac{1}{2}(-+X)-\frac{1}{7}\right)\left(\quad P_{14}=\frac{1}{2}(\square-X)+\frac{1}{6}\right\rangle \\
& \left.P_{7}=-\frac{1}{6}\right\rangle \\
& \left.P_{1}=\frac{1}{7}\right)(.
\end{aligned}
$$

2. The bulk S-matrix

The following g_{2}-invariant S-matrix satisfies the Yang-Baxter equation [1, 5]:

$$
S_{(1,1)}(\theta)=S(\theta)=\sigma(\theta)\left(P_{27}+[2] P_{14}+[8] P_{7}+[2][12] P_{1}\right)
$$

where $\sigma(\theta)$ is a scalar prefactor and

$$
[y]=\frac{\frac{y i \pi}{12}+\theta}{\frac{y \mathrm{i} \pi}{12}-\theta}
$$

Imposing R-matrix unitarity on the S-matrix gives $\sigma(\theta) \sigma(-\theta)=1$, and imposing Hermitian analyticity gives $\sigma(\theta)=\sigma\left(-\theta^{*}\right)^{*}$. We rewrite the S-matrix as

$$
\begin{equation*}
\left.S(\theta)=\omega(\theta)\left(--\frac{6 \theta}{\mathrm{i} \pi} \nless+\frac{2 \theta}{(\mathrm{i} \pi-\theta)}\right)\left(+\frac{\theta}{\left(\frac{\mathrm{i} \pi}{3}-\theta\right)}\right\rangle\right) \tag{2.1}
\end{equation*}
$$

where $\sigma(\theta)=\left(1-\frac{6 \theta}{i \pi}\right) \omega(\theta)$, and impose crossing symmetry

$$
\begin{aligned}
\omega(\theta)(- & \left.\left.-\frac{6 \theta}{\mathrm{i} \pi} \searrow+\frac{2 \theta}{(\mathrm{i} \pi-\theta)}\right)\left(+\frac{\theta}{\left(\frac{\mathrm{i} \pi}{3}-\theta\right)}\right\rangle\right) \\
& =\omega(\mathrm{i} \pi-\theta)()\left(-\frac{6(\mathrm{i} \pi-\theta)}{\mathrm{i} \pi} \searrow+\frac{2(\mathrm{i} \pi-\theta)}{\theta}-+\frac{(\mathrm{i} \pi-\theta)}{\left(\theta-\frac{\mathrm{i} \pi}{3}\right)} X\right)
\end{aligned}
$$

Using $X=-\rangle+2 \chi---)$ (we find that this is satisfied if
$\omega(\theta)=\omega(\mathrm{i} \pi-\theta) \frac{(\mathrm{i} \pi-\theta)\left(\frac{2 \mathrm{i} \pi}{3}-\theta\right)}{\theta\left(\frac{\mathrm{i} \pi}{3}-\theta\right)} \Leftrightarrow \sigma(\theta)=\sigma(\mathrm{i} \pi-\theta) \frac{(\mathrm{i} \pi-\theta)\left(\frac{2 \mathrm{i} \pi}{3}-\theta\right)\left(\frac{\mathrm{i} \pi}{6}-\theta\right)}{\theta\left(\frac{\mathrm{i} \pi}{3}-\theta\right)\left(\theta-\frac{5 \mathrm{i} \pi}{6}\right)}$.
To solve for $\sigma(\theta)$ we first introduce

$$
\mu_{a}(\theta)=\frac{\Gamma\left(\frac{\theta}{2 i \pi}+\frac{a}{12}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{a}{12}+\frac{1}{2}\right)}{\Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{a}{12}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{a}{12}+\frac{1}{2}\right)}
$$

which satisfies $\mu_{a}(\theta) \mu_{a}(-\theta)=1$ and, for real $a, \mu_{a}(\theta)=\mu_{a}\left(-\theta^{*}\right)^{*}$. Further

$$
\frac{\mu_{a}(\theta)}{\mu_{a}(\mathrm{i} \pi-\theta)}=\frac{\left(\frac{a \mathrm{i} \pi}{6}-\theta\right)}{\left(\theta-\mathrm{i} \pi+\frac{a \mathrm{i} \pi}{6}\right)}=\frac{\mu_{6-a}(\mathrm{i} \pi-\theta)}{\mu_{6-a}(\theta)}
$$

We seek a minimal S-matrix, with no poles on the physical strip. The factor $\mu_{a}(\theta)$ has simple poles at $\theta=-2 \mathrm{i} \pi n-\frac{a \mathrm{i} \pi}{6}, \theta=2 \mathrm{i} \pi n+\mathrm{i} \pi+\frac{a \mathrm{i} \pi}{6}$ and simple zeroes at $\theta=2 \mathrm{i} \pi n+\frac{a \mathrm{i} \pi}{6}$, $\theta=-2 \mathrm{i} \pi n-\mathrm{i} \pi-\frac{a \mathrm{i} \pi}{6}$ for $n=0,1,2, \ldots$. Thus, to cancel the poles in (2.1) we are led to

$$
\sigma(\theta)=\mu_{0}(-\theta) \mu_{1}(\theta) \mu_{3}(\theta) \mu_{4}(\theta)
$$

so that
$\sigma(\theta)=\frac{\Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{1}{2}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}\right) \Gamma\left(\frac{-\theta}{2 \theta}+\frac{7}{12}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{1}{12}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{3}{4}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{1}{4}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{5}{6}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{1}{3}\right)}{\Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{1}{2}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{7}{12}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{1}{12}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{3}{4}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{1}{4}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{5}{6}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{1}{3}\right)}$
(in fact we may choose plus or minus this-our choice of the positive sign will not affect the S-matrix). Thus we have established a minimal S-matrix which is g_{2} invariant.

The g_{2} PCM S-matrix acts on multiplets which are representations of $\left(g_{2} \times g_{2}\right)$, and is constructed from two minimal S-matrices together with a CDD factor $X(\theta)$:

$$
S_{(1,1)}^{P C M}(\theta)=X_{(1,1)}(\theta)\left(S(\theta)_{L} \otimes S(\theta)_{R}\right)
$$

In order that $S_{(1,1)}^{P C M}(\theta)$ satisfy R-matrix unitarity and crossing-symmetry we require

$$
X_{(1,1)}(\theta) X_{(1,1)}(-\theta)=1 \quad \text { and } \quad \frac{X_{(1,1)}(\theta)}{X_{(1,1)}(\mathrm{i} \pi-\theta)}=1
$$

To construct X we use

$$
(y)=(y)_{\theta}=\frac{\sinh \left(\frac{\theta}{2}+\frac{y \mathrm{i} \pi}{24}\right)}{\sinh \left(\frac{\theta}{2}-\frac{y \mathrm{i} \pi}{24}\right)}
$$

this satisfies

$$
(y)_{\theta}(y)_{-\theta}=1 \quad \frac{(y)_{\theta}}{(y)_{\mathrm{i} \pi-\theta}}=(2 y)_{2 \theta} \quad \text { and } \quad(y)=(y+24)
$$

The natural choice might be $X=-(2)(4)(8)(10)$, where we have allowed two 7 s to fuse (via simple poles with positive residues) to form either a $\mathbf{7}$ (at $\theta=2 \mathrm{i} \pi / 3$) or a $\mathbf{1 4} \oplus \mathbf{1}$ (at $\theta=\mathrm{i} \pi / 6$, yielding a multiplet of mass $2 \cos (\pi / 12)=\frac{1}{2}(\sqrt{6}+\sqrt{2})$ times the mass of the 7$)$. We must then check that the bootstrap equations are satisfied for the scattering of a 7 off a fused $\mathbf{7} \subset \mathbf{7} \otimes \mathbf{7}$ (an intricate calculation requiring much repeated application of (1.1)). The minimal S-matrix is consistent with this, but the CDD factor requires an extra factor (6) ${ }^{2}$, and we must have

$$
X_{(1,1)}(\theta)=-(2)(4)(6)^{2}(8)(10)
$$

The apparent double pole at $\mathrm{i} \pi / 2$ thus introduced is spurious: it is cancelled by a simple zero in each minimal S.

3. The boundary S-matrix

We now consider the half-line case. Following [2], we try a minimal boundary S-matrix of the form

$$
\left.K(\theta)=\frac{\tau(\theta)}{(1-c \theta)}\left(-+c \theta^{-}-\right)^{-}\right)
$$

The conditions of boundary R-matrix unitarity and Hermitian analyticity impose the constraints

$$
\begin{array}{rlrl}
(-\infty-)^{\dagger}=-\infty-\infty & =-\quad c \in \mathbb{R} \quad \quad \tau(\theta)=\tau\left(-\theta^{*}\right)^{*} \quad \text { and } \\
\tau(\theta) \tau(-\theta) & =1 . & &
\end{array}
$$

We must also impose crossing-unitarity

$$
\begin{gathered}
\left.\frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\left(1-c\left(\frac{\mathrm{i} \pi}{2}-\theta\right)\right)}()+c\left(\frac{\mathrm{i} \pi}{2}-\theta\right) \rho\right)=\frac{\omega(\mathrm{i} \pi-2 \theta) \tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}{\left(1-c\left(\frac{\mathrm{i} \pi}{2}+\theta\right)\right)}()\left(-\frac{6(\mathrm{i} \pi-2 \theta)}{\mathrm{i} \pi} \ngtr\right. \\
\left.\left.+\frac{(\mathrm{i} \pi-2 \theta)}{\theta}-+\frac{(\mathrm{i} \pi-2 \theta)}{\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)} \mathcal{X}\right)()+c\left(\frac{\mathrm{i} \pi}{2}+\theta\right) \oint\right)
\end{gathered}
$$

After applying (1.1) we find that this implies

$$
\begin{aligned}
\frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}= & \frac{\omega(\mathrm{i} \pi-2 \theta)\left(1-c\left(\frac{\mathrm{i} \pi}{2}-\theta\right)\right)\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}{\left(1-c\left(\frac{\mathrm{i} \pi}{2}+\theta\right)\right)\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\left(14+2 \mathrm{i} \pi c \bigcirc+\frac{\mathrm{i} \pi}{\theta}+4\left(c \bigcirc+\frac{6}{\mathrm{i} \pi}\right) \theta\right) \\
& \times \frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{i \pi}{2}+\theta\right)}=\frac{\omega(\mathrm{i} \pi-2 \theta)\left(1-c\left(\frac{\mathrm{i} \pi}{2}-\theta\right)\right)\left(\theta-\frac{\mathrm{i} \pi}{3}\right)(\mathrm{i} \pi+2 \theta)}{\left(1-c\left(\frac{\mathrm{i} \pi}{2}+\theta\right)\right)\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)} \\
& \times\left(\frac{-\alpha}{\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}+\frac{1}{\theta} \mp \frac{12}{\mathrm{i} \pi}\right)
\end{aligned}
$$

together with (for non-trivial $-\infty$) $= \pm \oint$ and $\gamma=\alpha \oint$ for some constant α. Comparing the two expressions we find $\alpha=0$ and

$$
c \bigcirc=-\frac{6(1 \pm 1)}{\mathrm{i} \pi} .
$$

However, $\bigcirc=0$ together with $-\bigcirc-\bigcirc=-$ has no solutions in odd dimensions (the eigenvalues of such a matrix are ± 1, an odd number of which cannot sum to zero). We thus have $\left(-O^{-}\right)^{t}=-{ }^{-}$and

$$
\frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=\frac{\omega(\mathrm{i} \pi-2 \theta)\left(1-c\left(\frac{\mathrm{i} \pi}{2}-\theta\right)\right)\left(\theta-\frac{\mathrm{i} \pi}{3}\right)(\mathrm{i} \pi+2 \theta)}{\left(1-c\left(\frac{\mathrm{i} \pi}{2}+\theta\right)\right)\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\left(\frac{1}{\theta}-\frac{12}{\mathrm{i} \pi}\right)
$$

or
$\frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=[6]\left[\frac{12}{c \mathrm{i} \pi}-6\right] \sigma(2 \theta) \quad(--)^{t}=-\infty \quad$ and $\quad c \bigcirc=-\frac{12}{\mathrm{i} \pi}$.
Last we have to impose the boundary Yang-Baxter equation (bYBe). After some algebra we find that this is satisfied if

$$
\rangle+{ }_{-\infty}^{-\infty}=\frac{c i \pi}{12}\right\rangle-\infty
$$

Now using (1.1) we find

Thus, putting these two results together

$$
\left.\left.\longrightarrow=\frac{c i \pi}{12}\right\rangle \longrightarrow \quad\right\rangle=\frac{c i \pi}{12}
$$

Consequently we must have $c= \pm \frac{12}{\mathrm{i} \pi}$, with $\left.\wp_{0}= \pm\right\rangle$ and $\bigcirc=\mp 1$.
In summary, we have shown that the conditions of R-matrix unitarity, Hermitian analyticity, crossing unitarity and the bYBe are satisfied by a minimal boundary ' K '-matrix

$$
\frac{\tau(\theta)}{\left(1 \mp \frac{12 \theta}{\mathrm{i} \pi}\right)}\left(- \pm \frac{12 \theta}{\mathrm{i} \pi}-\bigcirc\right)=\tau(\theta)\left(P_{-}[\pm 1] P_{+}\right) \quad\left(P_{ \pm}=\frac{1}{2}(- \pm-\infty)\right)
$$

where

$$
\begin{aligned}
& \left.(-\infty)^{\dagger}=-\infty \quad(-\infty-)^{t}=-\infty \quad-\bigcirc=-\quad \text { ᄋо } 0= \pm\right\rangle \quad \bigcirc=\mp 1 \\
& \tau(\theta) \tau(-\theta)=1 \quad \tau(\theta)=\tau\left(-\theta^{*}\right)^{*} \quad \frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=[6][\pm 1-6] \sigma(2 \theta) .
\end{aligned}
$$

In fact, since $[1]_{\frac{i \pi}{2}-\theta} /[1]_{\frac{i \pi}{2}+\theta}=[-7] /[-5]$, the choice of sign is redundant-both choices give the same minimal K-matrix. We can write it as

$$
\frac{\tau(\theta)}{\left(1-\frac{12 \theta}{\mathrm{i} \pi}\right)}\left(I+\frac{12 \theta}{\mathrm{i} \pi} E\right)=\tau(\theta)\left(P_{-}[1] P_{+}\right) \quad\left(P_{ \pm}=\frac{1}{2}(I \pm E)\right)
$$

where $E=Q X Q^{-1}, Q \in G_{2}, X=\operatorname{diag}(1,1,1,-1,-1,-1,-1)$. This is clearly a subspace of the symmetric space $S O(7) / S(O(3) \times O(4))$; in fact we have

$$
E \in \frac{G_{2}}{S U(2) \times S U(2)}
$$

the space of quaternionic subalgebras of the octonions, as may be seen by considering the action of G_{2} on a basic triple of octonions [6].

The following constraints are imposed on $\tau(\theta)$:

$$
\tau(\theta) \tau(-\theta)=1 \quad \tau(\theta)=\tau\left(-\theta^{*}\right)^{*} \quad \frac{\tau\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\tau\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=[6][-5] \sigma(2 \theta)
$$

To solve these we note that

$$
\frac{\mu_{a}\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\mu_{a}\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=-[2 a-6]
$$

and we define
$\eta_{a}(\theta)=\frac{\Gamma\left(\frac{-\theta}{2 i \pi}+\frac{a}{12}\right) \Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{a}{12}+\frac{1}{4}\right)}{\Gamma\left(\frac{\theta}{2 \mathrm{i} \pi}+\frac{a}{12}\right) \Gamma\left(\frac{-\theta}{2 \mathrm{i} \pi}+\frac{a}{12}+\frac{1}{4}\right)} \quad$ so that $\quad \frac{\eta_{a}\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\eta_{a}\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=\mu_{2 a-6}(2 \theta)$.
This leads us to

$$
\tau(\theta)=\mu_{1 / 2}(\theta) \mu_{6}(\theta) \eta_{7 / 2}(\theta) \eta_{9 / 2}(\theta) \eta_{5}(\theta) \eta_{6}(\theta)
$$

The simple poles of $\eta_{a}(\theta)$ are at $\theta=2 \mathrm{i} \pi n+\frac{a \mathrm{i} \pi}{6}$ and $\theta=-2 \mathrm{i} \pi n-\frac{\mathrm{i} \pi}{2}-\frac{a \mathrm{i} \pi}{6}$, while the simple zeroes are at $\theta=-2 \mathrm{i} \pi n-\frac{a \mathrm{i} \pi}{6}$ and $\theta=2 \mathrm{i} \pi n+\frac{\mathrm{i} \pi}{2}+\frac{a \mathrm{i} \pi}{6}$, and so the K-matrix is minimal.

The final piece we require for the complete PCM K-matrix is the factor $Y_{1}(\theta)$, which must satisfy

$$
\frac{Y_{1}\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{Y_{1}\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}=X_{(1,1)}(\mathrm{i} \pi-2 \theta)=X_{(1,1)}(2 \theta)
$$

We make use of the fact that

$$
\frac{(y)_{\frac{\mathrm{i} \pi}{2}-\theta}}{(y)_{\frac{\mathrm{i} \pi}{2}+\theta}}=(2 y)_{\mathrm{i} \pi-2 \theta}=(2 y+24)_{\mathrm{i} \pi-2 \theta} .
$$

Thus the most natural choice is

$$
Y_{1}(\theta)=(1)(2)(-9)^{2}(-8)(-7)(-6)
$$

This has a physical strip simple pole at $\theta=\frac{\mathrm{i} \pi}{12}$ at which the minimal K-matrix projects onto the subspace associated with P_{+}(the smaller one, and the $(\mathbf{3}, \mathbf{1})$ of $\left(a_{1} \times a_{1}\right)$ as found in [3]). The simple pole at $\theta=\frac{i \pi}{6}$ corresponds to an on-shell diagram which is possible precisely when the bulk 3-point coupling of 7 s exists.

We should also check the simpler trial solution of [2] for a minimal K-matrix, namely

$$
K(\theta)=\rho(\theta)-0-
$$

Imposing crossing-unitarity gives

$$
\begin{aligned}
\left.\frac{\rho\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\rho\left(\frac{\mathrm{i} \pi}{2}+\theta\right)}\right\rangle= & \omega(\mathrm{i} \pi-2 \theta)\left(\frac{4\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}{\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right)\left(+\frac{4(\mathrm{i} \pi-2 \theta)(\mathrm{i} \pi-3 \theta)}{\mathrm{i} \pi\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}-\right. \\
& \left.\left.\left.+\frac{(\mathrm{i} \pi-2 \theta)\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}{\theta\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right\rangle+\frac{(\mathrm{i} \pi-2 \theta)}{\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right\rangle\right) \rho
\end{aligned}
$$

which implies

$$
\begin{aligned}
\frac{\rho\left(\frac{\mathrm{i} \pi}{2}-\theta\right)}{\rho\left(\frac{\mathrm{i} \pi}{2}+\theta\right)} \oint= & \left.\omega(\mathrm{i} \pi-2 \theta)\left(\frac{4\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}{\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right) \circlearrowleft+\frac{4(\mathrm{i} \pi-2 \theta)(\mathrm{i} \pi-3 \theta)}{\mathrm{i} \pi\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right\rangle \\
& \left.\left.+\frac{(\mathrm{i} \pi-2 \theta)\left(\theta-\frac{\mathrm{i} \pi}{3}\right)}{\theta\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}>+\frac{(\mathrm{i} \pi-2 \theta)}{\left(2 \theta-\frac{\mathrm{i} \pi}{3}\right)}\right\rangle-\rho\right) .
\end{aligned}
$$

For non-trivial $-\infty$ we must have $\bigcirc=0,(-\infty)^{t}= \pm-\infty$ and $\rangle-\alpha=\alpha$. But, as pointed out earlier, the constraint $\bigcirc=0$ is inconsistent with $-\mathrm{O}=-$. Thus there are no non-trivial solutions of this form.

Acknowledgments

NJM would like to thank Tony Sudbery for a helpful discussion of the octonions, and BJS would like to thank the UK EPSRC for a PhD studentship.

References

[1] Ogievetsky E 1986 Factorized S-matrix with G_{2} symmetry J. Phys. G: Nucl. Phys. 12 L105
[2] MacKay N and Short B 2003 Boundary scattering, symmetric spaces and the principal chiral model on the half-line Commun. Math. Phys. 233313 (Preprint hep-th/0104212)
[3] MacKay N 2002 Rational K-matrices and representations of twisted Yangians J. Phys. A: Math. Gen. 357865 (Preprint math.QA/0205155)
[4] Cvitanovic P 1976 Group theory for Feynman diagrams in non-Abelian gauge theories Phys. Rev. D 141536 Cvitanovic P Group theory: exceptional Lie groups as invariance groups http://www.nbi.dk/GroupTheory/ postscript.html
[5] Ogievetsky E and Wiegmann P 1986 Factorized S-matrix and the Bethe ansatz for simple Lie groups Phys. Lett. B 168360
[6] Baez J The Octonions Preprint math.RA/0105155

