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Abstract
We investigate the g2-invariant bulk (1+1D, factorized) S-matrix constructed
by Ogievetsky, using the bootstrap on the three-point coupling of the vector
multiplet to constrain its CDD ambiguity. We then construct the corresponding
boundary S-matrix, demonstrating it to be consistent with Y (g2, a1 × a1)

symmetry.

PACS number: 11.55.Bq

1. Introduction

As a preliminary step in the investigation using tensor methods of (1+1)-dimensional factorized
S-matrices with exceptional g (and Yangian Y (g)) invariance, we investigate the case g = g2.
The factorized S-matrix for the seven-dimensional representation 7 of g2 was constructed by
Ogievetsky [1], and we use this to construct the (g2 × g2)-invariant S-matrix, applicable in the
principal chiral model (PCM). We may choose the S-matrix to have a bootstrap pole for the
self-coupling of the 7 multiplet, and the bootstrap applied to this process constrains the CDD
factor.

We then investigate the corresponding solutions of the boundary Yang–Baxter equations
and the boundary S-matrices for the g2 PCM—that is, the extension to g2 of the calculations
carried out for classical g in [2]. The spectral decomposition is precisely that expected from
the Y (g2, a1 × a1) symmetry [3].

The method used is the diagrammatic technique of Cvitanovic [4]. We denote the

cubic antisymmetric invariant of g2 as , then construct the 7 of g2 by taking the defining

representation of SO(7) and restricting to those ∈ SO(7) such that = . Here
satisfies the identities

= −6 + = 2 − − (1.1)
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and it is (sometimes repeated) application of these which is needed to carry out the calculations.
If we take the tensor product

7 ⊗ 7 = 27 ⊕ 14 ⊕ 7 ⊕ 1

then the projectors onto the irreducible g2-representations are

P27 = 1

2

(
+

)
− 1

7
P14 = 1

2

(
−

)
+

1

6

P7 = −1

6
P1 = 1

7
.

2. The bulk S-matrix

The following g2-invariant S-matrix satisfies the Yang–Baxter equation [1, 5]:

S(1,1)(θ) = S(θ) = σ(θ) (P27 + [2]P14 + [8]P7 + [2][12]P1)

where σ(θ) is a scalar prefactor and

[y] =
yiπ
12 + θ

yiπ
12 − θ

.

Imposing R-matrix unitarity on the S-matrix gives σ(θ)σ (−θ) = 1, and imposing Hermitian
analyticity gives σ(θ) = σ(−θ∗)∗. We rewrite the S-matrix as

S(θ) = ω(θ)

(
− 6θ

iπ
+

2θ

(iπ − θ)
+

θ(
2iπ
3 − θ

)
)

(2.1)

where σ(θ) = (
1 − 6θ

iπ

)
ω(θ), and impose crossing symmetry

ω(θ)

(
− 6θ

iπ
+

2θ

(iπ − θ)
+

θ(
2iπ
3 − θ

)
)

= ω(iπ − θ)

(
− 6(iπ − θ)

iπ
+

2(iπ − θ)

θ
+

(iπ − θ)(
θ − iπ

3

)
)

.

Using = − + 2 − − we find that this is satisfied if

ω(θ) = ω(iπ − θ)
(iπ − θ)

(
2iπ
3 − θ

)
θ
(

iπ
3 − θ

) ⇔ σ(θ) = σ(iπ − θ)
(iπ − θ)

(
2iπ
3 − θ

)(
iπ
6 − θ

)
θ
(

iπ
3 − θ

)(
θ − 5iπ

6

) .

To solve for σ(θ) we first introduce

µa(θ) = �
(

θ
2iπ + a

12

)
�

( −θ
2iπ + a

12 + 1
2

)
�

( −θ
2iπ + a

12

)
�

(
θ

2iπ + a
12 + 1

2

)
which satisfies µa(θ)µa(−θ) = 1 and, for real a, µa(θ) = µa(−θ∗)∗. Further

µa(θ)

µa(iπ − θ)
=

(
aiπ

6 − θ
)

(
θ − iπ + aiπ

6

) = µ6−a(iπ − θ)

µ6−a(θ)
.

We seek a minimal S-matrix, with no poles on the physical strip. The factor µa(θ) has
simple poles at θ = −2iπn − aiπ

6 , θ = 2iπn + iπ + aiπ
6 and simple zeroes at θ = 2iπn + aiπ

6 ,

θ = −2iπn − iπ − aiπ
6 for n = 0, 1, 2, . . . . Thus, to cancel the poles in (2.1) we are led to

σ(θ) = µ0(−θ)µ1(θ)µ3(θ)µ4(θ)
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so that

σ(θ) = �( θ
2iπ + 1

2)�( −θ
2iπ )�( −θ

2iπ + 7
12)�( θ

2iπ + 1
12)�( −θ

2iπ + 3
4)�( θ

2iπ + 1
4)�( −θ

2iπ + 5
6)�( θ

2iπ + 1
3)

�( −θ
2iπ + 1

2)�( θ
2iπ )�( θ

2iπ + 7
12)�( −θ

2iπ + 1
12)�( θ

2iπ + 3
4)�( −θ

2iπ + 1
4)�( θ

2iπ + 5
6)�( −θ

2iπ + 1
3)

(in fact we may choose plus or minus this—our choice of the positive sign will not affect the
S-matrix). Thus we have established a minimal S-matrix which is g2 invariant.

The g2 PCM S-matrix acts on multiplets which are representations of (g2 × g2), and is
constructed from two minimal S-matrices together with a CDD factor X(θ):

SPCM
(1,1) (θ) = X(1,1)(θ)(S(θ)L ⊗ S(θ)R).

In order that SPCM
(1,1) (θ) satisfy R-matrix unitarity and crossing-symmetry we require

X(1,1)(θ)X(1,1)(−θ) = 1 and
X(1,1)(θ)

X(1,1)(iπ − θ)
= 1.

To construct X we use

(y) = (y)θ = sinh
(

θ
2 + yiπ

24

)
sinh

(
θ
2 − yiπ

24

)
this satisfies

(y)θ (y)−θ = 1
(y)θ

(y)iπ−θ

= (2y)2θ and (y) = (y + 24).

The natural choice might be X = −(2)(4)(8)(10), where we have allowed two 7s to fuse
(via simple poles with positive residues) to form either a 7 (at θ = 2iπ/3) or a 14 ⊕ 1 (at
θ = iπ/6, yielding a multiplet of mass 2 cos(π/12) = 1

2 (
√

6 +
√

2) times the mass of the 7).
We must then check that the bootstrap equations are satisfied for the scattering of a 7 off a
fused 7 ⊂ 7 ⊗ 7 (an intricate calculation requiring much repeated application of (1.1)). The
minimal S-matrix is consistent with this, but the CDD factor requires an extra factor (6)2, and
we must have

X(1,1)(θ) = −(2)(4)(6)2(8)(10).

The apparent double pole at iπ/2 thus introduced is spurious: it is cancelled by a simple zero
in each minimal S.

3. The boundary S-matrix

We now consider the half-line case. Following [2], we try a minimal boundary S-matrix of the
form

K(θ) = τ(θ)

(1 − cθ)
( + cθ ).

The conditions of boundary R-matrix unitarity and Hermitian analyticity impose the constraints

( )† = = c ∈ iR τ(θ) = τ(−θ∗)∗ and

τ(θ)τ (−θ) = 1.

We must also impose crossing-unitarity

τ
(

iπ
2 − θ

)
(
1 − c

(
iπ
2 − θ

)) (
+ c

( iπ

2
− θ

) )
= ω(iπ − 2θ)τ

(
iπ
2 + θ

)
(
1 − c

(
iπ
2 + θ

)) (
− 6(iπ − 2θ)

iπ

+
(iπ − 2θ)

θ
+

(iπ − 2θ)(
2θ − iπ

3

)
) (

+ c
( iπ

2
+ θ

) )
.
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After applying (1.1) we find that this implies

τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = ω(iπ − 2θ)
(
1 − c

(
iπ
2 − θ

))(
θ − iπ

3

)
(
1 − c

(
iπ
2 + θ

))(
2θ − iπ

3

) (
14 + 2iπc +

iπ

θ
+ 4

(
c +

6

iπ

)
θ

)

× τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = ω(iπ − 2θ)
(
1 − c

(
iπ
2 − θ

))(
θ − iπ

3

)
(iπ + 2θ)(

1 − c
(

iπ
2 + θ

))(
2θ − iπ

3

)
×

(
−α(

θ − iπ
3

) +
1

θ
∓ 12

iπ

)

together with (for non-trivial ) = ± and = α for some constant α.
Comparing the two expressions we find α = 0 and

c = −6(1 ± 1)

iπ
.

However, = 0 together with = has no solutions in odd dimensions (the
eigenvalues of such a matrix are ±1, an odd number of which cannot sum to zero). We thus

have ( )t = and

τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = ω(iπ − 2θ)
(
1 − c

(
iπ
2 − θ

))(
θ − iπ

3

)
(iπ + 2θ)(

1 − c
(

iπ
2 + θ

))(
2θ − iπ

3

) (
1

θ
− 12

iπ

)
or

τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = [6]

[
12

ciπ
− 6

]
σ(2θ) ( )t = and c = −12

iπ
.

Last we have to impose the boundary Yang–Baxter equation (bYBe). After some algebra we
find that this is satisfied if

+ = ciπ

12
.

Now using (1.1) we find

= +
12

ciπ
.

Thus, putting these two results together

= ciπ

12
⇔ = ciπ

12
.

Consequently we must have c = ± 12
iπ , with = ± and = ∓1.

In summary, we have shown that the conditions of R-matrix unitarity, Hermitian
analyticity, crossing unitarity and the bYBe are satisfied by a minimal boundary ‘K’-matrix

τ(θ)(
1 ∓ 12θ

iπ

) (
± 12θ

iπ

)
= τ(θ)(P−[±1]P+

) (
P± = 1

2
( ± )

)

where

( )† = ( )t = = = ± = ∓1

τ(θ)τ (−θ) = 1 τ(θ) = τ(−θ∗)∗
τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = [6] [±1 − 6] σ(2θ).
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In fact, since [1] iπ
2 −θ /[1] iπ

2 +θ = [−7]/[−5], the choice of sign is redundant—both choices
give the same minimal K-matrix. We can write it as

τ(θ)(
1 − 12θ

iπ

) (
I +

12θ

iπ
E

)
= τ(θ)(P−[1]P+)

(
P± = 1

2
(I ± E)

)

where E = QXQ−1,Q ∈ G2, X = diag(1, 1, 1,−1,−1,−1,−1). This is clearly a subspace
of the symmetric space SO(7)/S(O(3) × O(4)); in fact we have

E ∈ G2

SU(2) × SU(2)

the space of quaternionic subalgebras of the octonions, as may be seen by considering the
action of G2 on a basic triple of octonions [6].

The following constraints are imposed on τ(θ):

τ(θ)τ (−θ) = 1 τ(θ) = τ(−θ∗)∗
τ
(

iπ
2 − θ

)
τ
(

iπ
2 + θ

) = [6][−5]σ(2θ).

To solve these we note that

µa

(
iπ
2 − θ

)
µa

(
iπ
2 + θ

) = −[2a − 6]

and we define

ηa(θ) = �
( −θ

2iπ + a
12

)
�

(
θ

2iπ + a
12 + 1

4

)
�

(
θ

2iπ + a
12

)
�

( −θ
2iπ + a

12 + 1
4

) so that
ηa

(
iπ
2 − θ

)
ηa

(
iπ
2 + θ

) = µ2a−6(2θ).

This leads us to

τ(θ) = µ1/2(θ)µ6(θ)η7/2(θ)η9/2(θ)η5(θ)η6(θ).

The simple poles of ηa(θ) are at θ = 2iπn + aiπ
6 and θ = −2iπn − iπ

2 − aiπ
6 , while the simple

zeroes are at θ = −2iπn − aiπ
6 and θ = 2iπn + iπ

2 + aiπ
6 , and so the K-matrix is minimal.

The final piece we require for the complete PCM K-matrix is the factor Y1(θ), which must
satisfy

Y1
(

iπ
2 − θ

)
Y1

(
iπ
2 + θ

) = X(1,1)(iπ − 2θ) = X(1,1)(2θ).

We make use of the fact that

(y) iπ
2 −θ

(y) iπ
2 +θ

= (2y)iπ−2θ = (2y + 24)iπ−2θ .

Thus the most natural choice is

Y1(θ) = (1)(2)(−9)2(−8)(−7)(−6).

This has a physical strip simple pole at θ = iπ
12 at which the minimal K-matrix projects onto

the subspace associated with P+ (the smaller one, and the (3, 1) of (a1 × a1) as found in [3]).
The simple pole at θ = iπ

6 corresponds to an on-shell diagram which is possible precisely
when the bulk 3-point coupling of 7s exists.

We should also check the simpler trial solution of [2] for a minimal K-matrix, namely

K(θ) = ρ(θ) .
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Imposing crossing-unitarity gives

ρ
(

iπ
2 − θ

)
ρ
(

iπ
2 + θ

) = ω(iπ − 2θ)

(
4
(
θ − iπ

3

)
(
2θ − iπ

3

) +
4(iπ − 2θ)(iπ − 3θ)

iπ
(
2θ − iπ

3

)
+

(iπ − 2θ)
(
θ − iπ

3

)
θ
(
2θ − iπ

3

) +
(iπ − 2θ)(
2θ − iπ

3

)
)

which implies

ρ
(

iπ
2 − θ

)
ρ
(

iπ
2 + θ

) = ω(iπ − 2θ)

(
4
(
θ − iπ

3

)
(
2θ − iπ

3

) +
4(iπ − 2θ)(iπ − 3θ)

iπ
(
2θ − iπ

3

)
+

(iπ − 2θ)
(
θ − iπ

3

)
θ
(
2θ − iπ

3

) +
(iπ − 2θ)(
2θ − iπ

3

)
)

.

For non-trivial we must have = 0, ( )t = ± and = α . But, as pointed

out earlier, the constraint = 0 is inconsistent with = . Thus there are no
non-trivial solutions of this form.
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